3 research outputs found

    Market-based coordination for domestic demand response in low-carbon electricity grids

    Get PDF
    Efforts towards a low carbon economy are challenging the electricity industry. On the supply-side, centralised carbon-intensive power plants are set to gradually decrease their contribution to the generation mix, whilst distributed renewable generation is to successively increase its share. On the demand-side, electricity use is expected to increase in the future due to the electrification of heating and transport. Moreover, the demand-side is to become more active allowing end-users to invest in generation and storage technologies, such as solar photovoltaics (PV) and home batteries. As a result, some network reinforcements might be needed and instrumentation at the users’ end is to be required, such as controllers and home energy management systems (HEMS). The electricity grid must balance supply and demand at all times in order to maintain technical constraints of frequency, voltage, and current; and this will become more challenging as a result of this transition. Failure to meet these constraints compromises the service and could damage the power grid assets and end-users’ appliances. Balancing generation, although responsive, is carbon-intensive and associated with inefficient asset utilisation, as these generators are mostly used during peak hours and sit idle the rest of the time. Furthermore, energy storage is a potential solution to assist the balancing problem in the presence of non-dispatchable low-carbon generators; however, it is substantially expensive to store energy in large amounts. Therefore, demand response (DR) has been envisioned as a complementary solution to increase the system’s resilience to weather-dependent, stochastic, and intermittent generation along with variable and temperature-correlated electric load. In the domestic setting, operational flexibility of some appliances, such as heaters and electric cars, can be coordinated amongst several households so as to help balance supply and demand, and reduce the need of balancing generators. Against this background, the electricity supply system requires new organisational paradigms that integrate DR effectively. Although some dynamic pricing schemes have been proposed to guide DR, such as time of use (ToU) and real-time pricing (RTP), it is still unclear how to control oscillatory massive responses (e.g., large fleet of electric cars simultaneously responding to a favourable price). Hence, this thesis proposes an alternative approach in which households proactively submit DR offers that express their preferences to their respective retailer in exchange for a discount. This research develops a computational model of domestic electricity use, and simulates appliances with operational flexibility in order to evaluate the effects and benefits of DR for both retailers and households. It provides a representation for this flexibility so that it can be integrated into specific DR offers. Retailers and households are modelled as computational agents. Furthermore, two market-based mechanisms are proposed to determine the allocation of DR offers. More specifically, a one-sided Vickrey-Clarke-Groves (VCG)-based mechanism and penalty schemes were designed for electricity retailers to coordinate their customers’ DR efforts so as to ameliorate the imbalance of their trading schedules. Similarly, a two-sided McAfee-based mechanism was designed to integrate DR offers into a multi-retailer setting in order to reduce zonal imbalances. A suitable method was developed to construct DR block offers that could be traded amongst retailers. Both mechanisms are dominant-strategy incentive-compatible and trade off a small amount of economic efficiency in order to maintain individual rationality, truthful reporting, weak budget balance and tractable computation. Moreover, privacy preserving is achieved by including computational agents from the independent system operator (ISO) as intermediaries between each retailer and its domestic customers, and amongst retailers. The theoretical properties of these mechanisms were proved using worst-case analysis, and their economic effects were evaluated in simulations based on data from a survey of UK household electricity use. In addition, forecasting methods were assessed on the end-users’ side in order to make better DR offers and avoid penalties. The results show that, under reasonable assumptions, the proposed coordination mechanisms achieve significant savings for both end-users and retailers, as they reduce the required amount of expensive balancing generation

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    3er. Coloquio: Fortalecimiento de los Colectivos de Docencia

    No full text
    Las memorias del 3er. Coloquio de Fortalecimiento de Colectivos de Docencia deben ser entendidas como un esfuerzo colectivo de la comunidad de académicos de la División de Ciencias y Artes para el Diseño, en medio de la pandemia COVID-19, con el fin de: • Analizar y proponer acciones concretas que promuevan el mejoramiento de la calidad docente en la División. • Proponer acciones que permitan continuar fortaleciendo los cursos con modalidad a distancia (remotos). • Ante un escenario que probablemente demandará en el mediano plazo, transitar del modelo remoto a un modelo híbrido, proponer acciones a considerar para la transición de los cursos. • Planear y preparar cursos de nivelación de conocimientos, para cuando se transite a la impartición de la docencia de manera mixta o presencial, dirigidos a los alumnos que no hayan tenido oportunidad de desarrollar actividades relevantes para su formación, como prácticas de talleres y laboratorios, visitas, o alguna otra actividad relevante
    corecore